Synthesis and Microwave Dielectric Properties of Double Perovskite Ceramics $Ba_2Zn_{1-x}Ca_xWO_6$

Anurag Gandhi and Sunita Keshri*

^{1,2}Department of Applied Physics, Birla Institute of Technology, Mesra, Ranchi 835215, India E-mail: ¹s_keshri@bitmesra.ac.in, ²sskeshri@rediffmail.com

Abstract—Recently the use of microwave dielectric ceramic materials have been proposed for controlling various properties of materials such as relative permittivity, dielectric loss and temperature coefficient of resonant frequency [1].Double perovskite $Ba_2Zn_{1-x}Ca_xWO_6(x = 0 - 0.4)$ are well known ceramics of current interest [2]. The samples were prepared by a conventional solid state reaction route. High purity $BaCO_3$, ZnO, $CaCO_3$ and WO_3 were used as raw materials. The compounds were weighed according to the stoichiometric ratio, grinded & calcined at $1100^{\circ}C$ for 4 hours in alumina crucible. The obtained calcined powders were mixed with polyvinyl alcohol & pressed into pellets of 10 mm diameter & 4.5 mm thickness under a pressure of 1000 kg/cm^2 . The structural, vibrational and microwave dielectric properties of double perovskite ceramics $Ba_2Zn_{1-x}Ca_xWO_6$ (x = 0 - 0.4)were investigated. The samples were sintered at different temperatures in the range $1300-1400 \ C$ for 4 h. The grown samples were characterized by means of X-ray diffraction, Raman spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy analysis. Microwave dielectric properties of the samples were measured using the $TE_{01\delta}$ resonance mode of the cylindrical pellets. The relative permittivity(ε_r), calculated using Clausius–Mossotti equation is found to be comparable with the experimental results. Our analysis shows that the tolerance factor (t) as well as the temperature coefficient of resonant frequency (τ_f) of these perovskites decreases with the increase in Ca content. The value of τ_f is zero for the samples with x = 0.3 and 0.4.

Fig. 1: XRD pattern of $Ba_2Zn_{1-x}Ca_xWO_6ceramics(x = 0 - 0.4)$, sintered at 1400 °C.

Fig. 2: Raman Spectra of $Ba_2Zn_{1-x}Ca_xWO_6ceramics(x = 0 - 0.4)$, sintered at 1400 °C.

REFERENCES

- [1] D.E. Bugaris, J.P. Hodges, A. Huq, H.C. Loye; J. Solid State Chem., 2011, 184, 2293–2298.
- [2] Won-Chun Oh, Jong Geun Choi, Chong Yeon Park, Chang Sung Lim; Journal of Ceramic Processing Research, 2011, 12(4), 435–438.